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Initial s tages of cavitat ion onset  in a s t r e a m  of liquid flowing past  a body is considered.  A cer ta in  pa t te rn  
of hydrodynamic phenomena r e l a t ed  to the onset  of cavttat ional  flows is porposed.  It is based on the 
assumption of a compara t ive ly  high cavitat ion number  and that a liquid with a r e l a t ive ly  low content of 
g a s - v a p o r  bubbles moves  within a cer ta in  zone. 

Resul ts  of calculat ions are  compared  with exper imenta l ly  de termined  dimensions of the cavitat ion zone. As 
an example,  the flow past  a step in a plane channel is considered.  

1. Cases  of e ros ion  of concre te  and meta l s  due to cavitat ion a re  ra ther  f requent  in h igh -p re s su re  hydraulic 
instal la t ions and in var ious  hydranlic machines ,  when in the initial s tage cavitat ion develops around pro t rus ions  of a 
smooth sur face  at compara t ive ly  high cavi tat ion numbers:  

2(p--2,) 
z - -  Ov ~ (1.1) 

Here  p, p, and v are,  r espec t ive ly ,  the p r e s s u r e ,  density, and veloci ty of the liquid, and Pv is the p r e s s u r e  of 
vapors  of the la t ter .  

In the potential  flow of a pe r f ec t  liquid around a ce r ta in  body the lowest p r e s s u r e s  a re  observed at the surface  
of the body, where,  obviously, the onset of incipient cavitat ion is to be expected. CarefuIly conducted exper iments  
had shown that, when an appropr ia te  s tat ic  p r e s s u r e  is reached,  numerous  vapor -gas  bubbles appear in the region of 
min imum p r e s s u r e  on the sur face  of the body. Owing to the p r e s e n c e  in ordinary  water  of sufficiently l a rge  cavitat ion 
nuclei ,  such bubbles are  generated at p r e s s u r e s  only slightly lower  than that of saturated s team [1]. With dec reas ing  
p r e s s u r e  or  inc reas ing  veloci ty  of the oncoming s t r eam the s t ra ining tension inc reases ,  thus c rea t ing  favorable  
conditions for the appearance of ever  s m a l l e r  cavitat ion nuclei.  At the s a m e  t ime  the par t  of the body sur face  along 
which bubbles a re  genera ted  inc reases  in length. 

The de te rmina t ion  of the s ize  of this par t  [of the body] makes  it possible  to es t imate  the s ize of the region in 
which eros ion  by cavitat ion will occur.  

Photographs taken at ve ry  short  t ime  in te rva ls  show that the end of the cavitat ion region is pulsating. Its mean 
posi t ion is, however,  well defined. A ce r t a in  averaged motion is cons idered  in the following. 

A number  of exper imenta l  invest igat ions ,  and in pa r t i cu la r  those whose resu l t s  a re  presented  in [2], make it 
poss ib le  to conclude that in the flow past  a body the p r e s s u r e  in the cavitat ion zone at the boundary of the body is 
constant. This boundary condition will  be used in the following in the formulat ion of ~he boundary value problem.  

Phenomena taking place  in the cavitat ion region can be descr ibed  as follows. In the immedia te  vicini ty of a body 
veloci ty  vec to r s  of the liquid and of a cer ta in  imaginary  medium consis t ing of evolving bubbles differ  in magnitude 
and direct ion.  The veloci ty  and d i rec t ion  of motion of bubbles and liquid become subsequently equalized in a zone in 
which moves  a mix tu re  of liquid and bubbles. The la t te r  may be considered as a kind of compress ib le  fluid [3, 4]. In 
the initial s tage of cavitat ion the motion is subsonic. 

Let us assume that the width of the region of the " two-veloci ty"  motion is smal l  and can be cons idered  as a kind 
of boundary layer .  Hence, in the following and also when substi tut ing the flow of a pe r fec t  fluid for that of a viscous 
one, we neglec t  this boundary l ayer  and consider  the whole of the reg ion  outside the body as a liquid with a 
compara t ive ly  low content of gas bubbles. The equation defining the motion of such fluid is of the ell iptic kind, which 
for low subsonic ve loc i t i es  is s i m i l a r  to the Laplace equation. 

When solving the problem of the cavitation zone length we use the Laplace equation as first approximation. 
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Compar i son  of calculated and exper imenta l  data shows these  assumptions to be ent i re ly  acceptable,  s ince 
they resu l t  in fa i r ly  accura te  d imensions  of the cavitat ion zone, whose s ize  is of the g rea tes t  interest .  This is to be 
expec ted  s ince the s ize  of this zone is to a cer ta in  extent an integral  proper ty .  

On the above assumptions the boundary condition (basedon the supposition of constant p r e s s u r e  in the cavitat ion 
zone) at the cor responding  par t  of the body indicates the exis tence  there  of a nonzero normal  component of velocity.  

This resu l t s  f rom a cer ta in  degree  of approximation in our analysis.  It should be noted that the occu r r ence  of such 
f ict i t ious d ivergent  flows also appears  in cer ta in  other  models  of cavitational flows (e. g . ,  the  E f r o s - G i l b a r g  model). 
The natural  condition of continuity of p r e s s u r e  throughout the region of flow of liquid is used in the determinat ion of 
the s ize  of the cavitat ion zone. 

We assume that the p r e s s u r e  on the par t  of the body where  cavitation is p resen t  is constant,  i . e . ,  that the 
absolute veloci ty  is constant,  while along the remaining  par t  the condition of s t r eaml ine  flow preva i l s ,  i. e . ,  the 
d i rec t ion  of the veloci ty  vec to r  is specified.  

Introducing in our  analysia ~he function w : ln~, where  ~ is the complex velocity,  we obtain 

co ~ ]n ] ~ I -~ iarg ~ - ul "~ iv1 (1.2) 

and for  the de te rmina t ion  of w we thus have the conditions of the Hi lber t  problem.  However,  in the problem considered 
below it is m o r e  convenient to use the veloci ty-hodograph method. 

When der iv ing  fur ther  approximation it should be kept in mind that, if the modulus of veloci ty  fi and the angle 
0 of the ve loc i ty  vec to r  to the coordinate  axis are  expressed  in new var iab les ,  the equation of motion of a co mpr e s s ib l e  
fluid reduces  to l inear  equations of the Chaplygin type. In this case  an exact solution can be der ived for a body whose 
contour cons is t s  of s t ra ight  line segments .  

2. Cons ider  the flow of a pe r fec t  fluid past  a step at the bottom of a plane channel at the stage of incipient 
cavitation. P a r t i c u l a r  attention should be given to the investigation of the effect of the r e l a t ive  height h/b of the step 
(h is the height of the step and b that of the channel) and its geomet ry  on the extent of the ~avLation zone. 

Assuming a uniform distr ibut ion of sufficiently smal l  cavitation bubbles in the liquid, so that in the f i r s t  
approximat ion the la t te r  can be considered to be isotropic  and incompress ib le ,  we obtain for  the veloci ty  potential  
~p(x, y) the Laplace  equation A~p : 0. 

We introduce the plane of the complex va r i ab le  z = x + iy (Fig. 1). The problem of finding the s ize  of the 
constant p r e s s u r e  region reduces  to the construct ion of the complex flow potential  w(z) = q~ + ir where  r y) is the 
s t r eam function. 

The complex veloci ty  
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Fig. 1 
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sa t i s f ies  the following conditions: at an in f in i te lyd is tan tpoin tA,  ~ = VA, and along sect ions AE, AB, and DE we have 
= 0. According to our assumptions the p r e s s u r e  along sect ion CD is constant. Hence, f rom the Bernoull i  integral  

I ~ I" = v 4  ~ + 2 (p - -  pv) / p along CD 

F r o m  this we have, in pa r t i cu la r ,  

vc2 = VD~ = VA ~ A- 2 (p - -  p . )  / p 

Thus in the hodograph plane ~ the region of the s ec to r  of angle c~u (0 < a -< 1/2) (Fig. 1) cor responds  to the region 
of actual flow. 

To solve this p roblem it is n e c e s s a r y  to map the region occupied by the moving liquid onto this sec to r  in the 
hodograph plane. F i r s t ,  we t r ans fe r  these regions  to the upper half-plane of the auxi l ia ry  va r i ab le  u (Fig. 1) with 
the shown cor respondence  of points. 

The function providing the conformal  t r ans fo rmat ion  of the upper half-plane of u onto the flow region in the z-p lane  
is defined by the Chr i s to f fe l -Schwar tz  integral  

u 

I (u ~ t) ~ du 
= ~1 (~ _ ~x)(~, _ ~ )  

- 1  

To find the constant of integrat ion c 1 and the unknown coordinates  of points A and E in plane u we make use of 
the fact that in c i rcumvent ing  these points in the u-plane along infinitely smal l  ha l f - c i r c l e s ,  the function defined by 
integral  (2.1) obtains increments  - (b  + h)i and bi, r e spec t ive ly  (Fig. 1). 

We have two a lgebra ic  equations 

( u E  - ~  1) ~ b ( u A  - ~  t )  z b-~-h (2.2) 
~tE - -  U A :~ ' U E - -  t t  A g 

Two of the unknowns in (2.2) can be expressed  by the third, e . g . ,  UA, andthe geomet r i c  d imensions  of the 
channel: 

/ b ,~1/~ a '~A--uz (2.3) u E = ( ~ + ~ ) / b - - ~  ) - - l ,  c1= ~ ( u ~ + 1 ) ~ _ ( ~ + 1 ) ~  

Constant u A will  be de te rmined  later .  

Integral  (2.1) can be expressed  in t e r m s  of e l emen ta ry  functions only for  rat ional  (y. Hence in the following we 
a s sume  G = m / n ,  where  m and n are  pos i t ive  in tegers .  

Represen t ing  integral  (2.1) as the sum of two in tegra ls  and introducing in each the substitution of va r i ab le  of the 
form 

(u-~ t) TM = t (2.4) 

we obtain 

t t 

Z=ux_ur: (u x+ t )  t ~ - ( u  x + t )  - - ( u E + l )  t ~ - ( u  E + t )  

Let us examine the f i r s t  integral  in (2.5). A decomposi t ion of the integrand into common f rac t ions  yields 

v t - - I  m 
t m - 1  - -  t tv  

t'*--(u x + t )  n ( u r  ~' t--t~ 
v 0 

(t,, = l u x  + 1 I : I n  e ~"~1~) 

(2.6) 

Each t e r m  of (2.6) is in tegrated f rom 0 to t with the pr incipal  value  of the logar i thm chosen as 
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t 

l ( ' )  
dt - -  "~v 

A(t, tv)= t - - ' ~ =  In t 
u 

(2.7) 

We ob ta in  the  c o n f o r m a l  m a p p i n g  func t i on  z(u) in i t s  f ina l  f o r m  as  

n--1 n--i 

ua __c' uE [~  t mA (t, t~)__ ~ ~  =o , =o s~mA (t, s~)] (2.8) 

w h e r e  s v a r e  the  r o o t s  of t h e  e q u a t i o n  

s ' ~ -  (u~ A- 1) = 0 

U s i n g  c e r t a i n  e l e m e n t a r y  f u n c t i o n s ,  
p l a n e  u (Fig.  1): 

we m a p  the  r e g i o n  of t he  c i r c u l a r  s e c t o r  of t he  ~ - p l a n e  onto  the  u p p e r  h a l f -  

I [7 ~ QI~ f VD '\11~l (2 .9 )  

The  c o o r d i n a t e  of p o i n t  A in the  u - p l a n e  is found f r o m  (2.9) at  ~ = VA: 

t i ' [VA \  l l a  f VD\ l la~  (2.10) 

H a v i n g  d e t e r m i n e d  a l l  of t h e  c o n s t a n t s  a p p e a r i n g  in t he  c o n f o r m a l  m a p p i n g  func t i on  (2.8), we f ind t he  c o o r d i n a t e  
of p o i n t  D, equa l  in the  z - p l a n e  to the  l e n g t h  l of the  c o n s t a n t  p r e s s u r e  r e g i o n ,  f r o m  (2.8) a t  u = 1 (Fig .  1): 

n - - 1  ,_ cl - -  ~ u  E {t m [1 2'/n~ s '~1~( t -  

In t h e  p a r t i c u l a r  e a s e  of a r e c t a n g u l a r  s t ep  at  t he  
s i m p l i f i e d :  

/ 
h /_f_____r_=..1 n ] / u E + l -  4 - ] / -U+I 

T a k i n g  in to  a c c o u n t  t h e  r e l a t i o n s h i p  

b o t t o m  of the  c h a n n e l  ((~ = 1/2)  f o r m u l a  (2.8) is  c o n s i d e r a b l y  

(2.12) 

VD~ = vff  (t q- x) 

we w r i t e  the  e x p l i c i t  e x p r e s s i o n  f o r  t h e  d e p e n d e n c e  of 1 on the  c a v i t a t i o n  n u m b e r  14 a t  (~ = 1 / 2 :  

b In Ib/-t- (b -~ h) ]/'2] (f - -  ]f12) h f q- V-2- ~ - -  - - ~ - l n  
~ [b! - (b + h) V~] (f + V~-) ~ -  VT 

(2.13) 

w h e r e  

(2 + up 
]~ = 2 (• q- t) 

P a s s i n g  in f o r m u l a  (2.13) to the  l i m i t  a s h  ~ ~ ,  we o b t a i n  t he  l e n g t h  of t h e  c o n s t a n t  p r e s s u r e  r e g i o n  fo r  the  

c a s e  of f low of an  i n f i n i t e  s t r e a m  p a s t  a r e c t a n g u l a r  s tep :  

- 1 V  J (2.14) 

T h e  d e p e n d e n c e  of t h e  r e l a t i v e  l eng th  l / h  of the  c o n s t a n t  p r e s s u r e  zone  on the  c a v i t a t i o n  n u m b e r  ~,  c a l c u l a t e d  by  
f o r m u l a  (2.13) f o r  s e v e r a l  v a l u e s  of the  r e l a t i v e  he igh t  h / b  of t he  s t ep ,  is s h o w n  in Fig.  2. I t  w a s  found  t h a t  t he  
h e i g h t  of a c h a n n e l  ha s  a c o n s i d e r a b l e  e f f ec t  on the  c a v i t a t i o n  zone  l e n g t h  a t  h / b  > 0.001.  
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L e t  us  c o m p a r e  t he  l e n g t h  of the  c a v i t a t i o n  zone  d e t e r m i n e d  by  f o r m u l a  (2.14) wi th  t h e  d i m e n s i o n  of the  zone  
in which  t h e  p r e s s u r e  is  be low tha t  of t h e  v a p o r  of the  l iqu id  and w h i c h  o b t a i n s  in the  s o l u t i o n  of the  p r o b l e m  of 
l a m i n a r  f low of a f lu id  c a p a b l e  of w i t h s t a n d i n g  i n f i n i t e l y  g r e a t  t e n s i l e  s t r e s s e s .  In s u c h  c a s e s  the  b o u n d a r y  cond i t i on  
~? = 0 i s  s a t i s f i e d  a l o n g  t he  e n t i r e  l eng th  of h a l f - l i n e  CE (Fig.  1). 

< 

The  l e n g t h  l*  of t he  s e c t i o n  in w h i c h  p r e s s u r e  p < Pv is found  in the  u s u a l  way an d  is de f ined  by t h e  f o r m u l a  

t * = - -  (2.15) 

F u n c t i o n s  l*~(;<) and  l * ( u )  a r e  s h o w n  in  Fig.  3, w h e r e  c u r v e  1 r e l a t e s  to the  l e n g t h  of the  c a v i t a t i o n  zone  
c a l c u l a t e d  by  f o r m u l a  (2.14) and c u r v e  2 t o t h a t o f t h e r e g i o n  i n w h i c h p  < Pv as  de f ined  b y  f o r m u l a  (2.15). It wi l l  b e  s e e n  
f r o m  Fig .  3 t h a t  f o r  s m a l l ~ ,  loo~ 1 0 / * , w h i l e f o r  h i g h  c a v i t a t i o n  n u m b e r s  l ~ / l *  ~ 2. 

3. A s e r i e s  of e x p e r i m e n t a l  i n v e s t i g a t i o n s  of c a v i t a t i o n a l  f low p a s t  s t e p s  was  c a r r i e d  out  in t h e  C a v i t a t i o n  
L a b o r a t o r y  of the  IPM ( I n s t i t u t e  of App l i ed  M e c h a n i c s )  of the  A c a d e m y  of S c i e n c e  of t h e  USSR, wi th  the  p a r t i c i p a t i o n  
of K. K. S h a l ' n e v ,  wi th  a v iew to c o n f i r m i n g  the  a s s u m p t i o n s  on  which  the t h e o r e t i c a l  a n a l y s i s  was  b a s e d .  

The  e x p e r i m e n t s  w e r e  c a r r i e d  out  in a h y d r o d y n a m i c  t ube  wi th  a w o r k i n g  s e c t i o n  of 24 x 100 ram.  M o d e l s  of 
s t e p s  of h e i g h t  h = 9.0, 7.0, 3.6,  and  1.8 m m  w h e r e  p o s i t i o n e d  in t h e  c o n s t r i c t e d  p a r t  of the  w o r k i n g  c h a n n e l  of 
24 x 90 m m  c r o s s  s e c t i o n .  T h e  r e l a t i v e  h e i g h t  of s t e p s  was  t hus  h / b  = 0.10,  0 .078,  0.040,  and 0.020.  E a c h  m o d e l  
was  t e s t e d  at  flow v e l o c i t i e s  in t he  r a n g e  of 1 1 - 1 9  m / s e c  m e a s u r e d  a t  t h e  w o r k i n g  c h a m b e r  ax i s .  V a r i o u s  s t a g e s  
of c a v i t a t i o n  a t  v = c o n s t  w e r e  p r o d u c e d  by  c o n t r o l l i n g  the  p r e s s u r e  in t h e  tube.  

The cavitation number was determined from velocity and pressure upstream of the step in the restricted section 

of the working chamber. The results were plotted in the form of curves of ~(X), where X = I/h is the relative length 

of the cavitation zone and l the visually assessed length of that zone from the front edge of the step. 

The  l e n g t h  l of the  c a v i t a t i o n  z o n e  was  m e a s u r e d  on a s c a l e  m a r k e d  on the  s i d e  of t h e  s tep .  

C e r t a i n  s t a g e s  of c a v i t a t i o n  w e r e  p h o t o g r a p h e d  in t h e  r e f l e c t e d  l igh t  of a f l a s h  bu lb  at  an e x p o s i t i o n  t i m e  of 
1 /2000  s e c  (Fig .  4). T h e  p h o t o g r a p h s  show t h a t  f o r  k = 0 - 5  the  c a v i t a t i o n  zone  c o n t a i n s  a m i x t u r e  of l iqu id  and v a p o r -  
gas  b u b b l e s .  In the  i n i t i a l  s t a g e s  t h e s e  b u b b l e s  a r e  c l u s t e r e d  at  a c e r t a i n  d i s t a n c e  f r o m  the  f r o n t  edge  of the  s t ep  in 
c a v e r n s  wh ich  b e c o m e  p e r i o d i c a l l y  d e t a c h e d  f r o m  the  s t ep .  Such c a v e r n s  a r e  a l s o  o b s e r v e d  in the  p r o x i m i t y  of the  
s t e p  edge  i t se l f .  Wi th  d e c r e a s i n g  c a v i t a t i o n  n u m b e r  t h e  zone  s t r u c t u r e  b e c o m e s  m o r e  h o m o g e n e o u s .  

Fig.  4 
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The resul ts  of calculat ion of the re la t ive  length X = l/h of the cavitation zone by formula  (2.13) for a step height 
h =  9 m m  and v e l o c i t y v =  1 1 . 6 m / s e c  are  shown in Fig. 5, and in Fig. 6 for h=  1 . S m m  a n d v =  17. 75 m/ sec .  
Exper imental  resul t s  a re  indicated in these f igures by dots. 

o I 
o g  
~3 

.z/ 

Fig. 6 

The exper imental ly  de termined dependenceu(h) shows a slight "hys teres is , "  depending on whether the 
exper iment  proceeds from suppressed cavitation to its ul t imate separat ion stage (the d i rec t  process)  or f rom the 
separa t ion  to the suppressed stage (the r eve r s e  process) .  

Exper imental  points lie close to the theoret ical  curves of ~(X), except for values in the neighborhood of u* and 
corresponding to the instant  of cavitation onset (l = 0). 

The considerable  effect on ~4" of the re la t ive  r e s t r i c t ion  h/b of the working channel is noticeable.  This is to a 
cer ta in  extent explained by the velocity decrease  in the boundary layer .  
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