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Initial stages of cavitation onset in a stream of liquid flowing past a body is considered. A certain pattern
of hydrodynamic phenomena related to the onset of cavitational flows is porposed. It is based on the
assumption of a comparatively high cavitation number and that a liquid with a relatively low content of
gas-vapor bubbles moves within a certain zone.

Results of calculations are compared with experimentally determined dimensions of the cavitation zone. As
an example, the flow past a step in a plane channel is considered.

1. Cases of erosion of concrete and metals due to cavitation are rather frequent in high-pressure hydraulic
installations and in various hydraulic machines, when in the initial stage cavitation develops around protrusions of a
smooth surface at comparatively high cavitation numbers:

2(p—2,)

= (1.1)
Here p, p, and v are, respectively, the pressure, density, and velocity of the liquid, and py, is the pressure of
vapors of the latter.

In the potential flow of a perfect liquid around a certain body the lowest pressures are observed at the surface
of the body, where, obviously, the onset of incipient cavitation is to be expected. Carefully conducted experiments
had shown that, when an appropriate static pressure is reached, numerous vapor-gas bubbles appear in the region of
minimum pressure on the surface of the body. Owing to the presence in ordinary water of sufficiently large cavitation
nuclei, such bubbles are generated at pressures only slightly lower than that of saturated steam [1]. With decreasing
pressure or increasing velocity of the oncoming stream the straining tension increases, thus creating favorable
conditions for the appearance of ever smaller cavitation nuclei. At the same time the part of the body surface along
which bubbles are generated increases in length.

The determination of the size of this part [of the body] makes it possible to estimate the size of the region in
which erosion by cavitation will occur.

Photographs taken at very short time intervals show that the end of the cavitation region is pulsating. Its mean
position is, however, well defined. A certain averaged motion is considered in the following.

A number of experimental investigations, and in particular those whose results are presented in [2], make it
possible to conclude that in the flow past a body the pressure in the cavitation zone at the boundary of the body is
constant, This boundary condition will be used in the following in the formulation of the boundary value problem.

Phenomena taking place in the cavitation region can be described as follows. In the immediate vicinity of a body
velocity vectors of the liquid and of a certain imaginary medium consisting of evolving bubbles differ in magnitude
and direction. The velocity and direction of motion of bubbles and liquid become subsequently equalized in a zone in
which moves a mixture of liquid and bubbles. The latter may be considered as a kind of compressible fluid {3, 4]. In
the initial stage of cavitation the motion is subsonic.

Let us assume that the width of the region of the "two-velocity" motion is small and can be considered as a kind
of boundary layer. Hence, in the following and also when substituting the flow of a perfect fluid for that of a viscous
one, we neglect this boundary layer and consider the whole of the region outside the body as a liquid with a
comparatively low content of gas bubbles. The equation defining the motion of such fluid is of the elliptic kind, which
for low subsonic velocities is similar to the Laplace equation.

When solving the problem of the cavitation zone length we use the Laplace equation as first approximation.
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Comparison of calculated and experimental data shows these assumptions to be entirely acceptable, since
they result in fairly accurate dimensions of the cavitation zone, whose size is of the greatest interest. This is to be
expected. since the size of this zone is to a certain extent an integral property.

On the above assumptions the boundary condition (basedon the supposition of constant pressure in the cavitation
zone) at the corresponding part of the body indicates the existence there of a nonzero normal component of velocity.

This results from a certain degree of approximation in our analysis. It should be noted that the occurrence of such
fictitious divergent flows also appears in certain other models of cavitational flows (e. g., the Efros-Gilbarg model).
The natural condition of continuity of pressure throughout the region of flow of liquid is used in the determination of
the size of the cavitation zone. :

We assume that the pressure on the part of the body where cavitation is present is constant, i.e., that the
absolute velocity is constant, while along the remaining part the condition of streamline flow prevails, i.e., the
direction of the velocity vector is specified.

Introducing in our analysis the function w = Ing, where £ is the complex velocity, we obtain
o=1In|Z|+iarg{ = w + iry (1.2)

and for the determination of w we thus have the conditions of the Hilbert problem. However, in the problem considered
below it is more convenient to use the velocity-hodograph method.

When deriving further approximation it should be kept in mind that, if the modulus of velocity g and the angle
6 of the velocity vector to the coordinate axis are expressed in new variables, the equation of motion of a compressible
fluid reduces to linear equations of the Chaplygin type. In this case an exact solution can be derived for a body whose
contour consists of straight line segments.

2. Consider the flow of a perfect fluid past a step at the bottom of a plane channel at the stage of incipient
cavitation. Particular attention should be given to the investigation of the effect of the relative height h/b of the step
(h is the height of the step and b that of the channel) and its geometry on the extent of the caviiation zone.

Assuming a uniform distribution of sufficiently small cavitation bubbles in the liquid, so that in the first
approximation the latter can be considered to be isotropic and incompressible, we obtain for the velocity potential
@ (%,y) the Laplace equation Ag = 0.

We introduce the plane of the complex variable z = x+ iy (Fig. 1). The problem of finding the size of the
constant pressure region reduces to the construction of the complex flow potential w(z) = ¢ + i, where ¥(x,y) is the
stream function.
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The complex velocity

E=dw/dz =&+ in
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satisfies the following conditions: at an infinitely distantpointA, £ = vp, and along sections AE, AB, and DE we have
n = 0. According to our agsumptions the pressure along section CD is constant. Hence, from the Bernoulli integral

[EF=v424+2( —p,)/p along CD

From this we have, in particular,
77()2 = ”Dz = Z’Az +2( —p)/p

Thus in the hodograph plane ¢ the region of the sector of angle ar (0 < @ = 1/2) (Fig. 1) corresponds to the region
of actual flow.

To solve this problem it is necessary to map the region occupied by the moving liquid onto this sector in the
hodograph plane. First, we transfer these regions to the upper half-plane of the auxiliary variable u (Fig. 1) with
the shown correspondence of points.

The function providing the conformal transformation of the upper half-plane of uontothe flow region in the z-plane
is defined by the Christoffel-Schwartz integral

T< (w4 1)*du
RN TRV O

To find the constant of integration c; and the unknown coordinates of points A and E in plane u we make use of
the fact that in circumventing these points in the u~plane along infinitely small half~circles, the function defined by
integral (2.1) obtains increments —(b + h)i and bi, respectively (Fig. 1).

We have two algebraic equations

(ug +1)*

(wg +10*  ppn
—u 1, =T
UgE A

Ug —U, 0

o L . (2.2)
Two of the unknowns in (2.2) can be expressed by the third, e.g., Up, andthe geometric dimensions of the

channel:

ATt @.3)
(g + 1) —(ug + D*

ETES

p o\
ug = (uy +1) (m) -1, a=
Constant up will be determined later.

Integral (2.1) can be expressed in terms of elementary functions only for rational ¢, Hence in the following we
assume @ = m/n, where m and n are positive integers.

Representing integral (2.1) as the sum of two integrals and introducing in each the substitution of variable of the

form
(@ 1" =1t 2.4)
we obtain
4
cn tm-1gs t™1ds
P —uy l:(uA + 1)§ 1 —(uy + 1) —(ug +1)S " — (ug 1) ] @.5)

Let us examine the first integral in (2.5). A decomposition of the integrand into common fractions yields

n—1 m

g1 1 3
= hd 2.6
(gt 1) rlEgTD 2 i1, @-6)

v =t

(8, = |uy + 1{U7 omilny

Each term of (2.6) is integrated from 0 to t with the principal value of the logarithm chosen as
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We obtain the conformal mapping function z(u) in its final form as

n—1 n—1

z= _”1___[ L emA G ) — D) s mA, sv)} 2.8)

-—U
Bam¥p LT, veo

where s, are the roots of the equation
s — (up 1) =0

Using certain elementary functions, we map the region of the circular sector of the ¢-plane onto the upper half-
plane u (Fig. 1):
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The coordinate of point A in the u-plane is found from (2.9) at § = vp:

1 r(,”i\" : <_”a)” | @.10)

7 |\7p v,

Having determined all of the constants appearing in the conformal mapping function (2.8), we find the coordinate
of point D, equal in the z-plane to the length [ of the constant pressure region, from 2.8) at u=1 (Fig. 1):

I
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n—1
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In the particular case of a rectangular step at the bottom of the channel (¢ = 1/2) formula (2.8) is considerably
simplified:
3 [ VugFi+ Vet
CrWmT Ve VR v
u, +14 Vu i+t
——VuA +1n —K:A-—__'_—*‘-——i—_—-_—')
V“A 41— Vet

Taking into account the relationship
opt == v,2 (1 %)

we write the explicit expression for the dependence of  on the cavitation number % at & =1/2:

b I G+R V(=YD kR VT
=2y 2] 2 R 2 2.13)
A R et VAR VD - V3
where
. G+ xp
=36

Passing in formula (2.13) to the limit asb — =, we obtain the length of the constant pressure region for the
case of flow of an infinite stream past a rectangular step:

Vrti41) @.14)
Vati—tl

o n v 21n

. =_h_[4(u+2> Vaii

The dependence of the relative length [ /h of the constant pressure zone on the cavitation number », calculated by
formula (2.13) for several values of the relative height h/b of the step, is shown in Fig. 2. Tt was found that the
height of a channel has a considerable effect on the cavitation zone length at h/b > 0.001.
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Let us compare the length of the cavitation zone determined by formula (2.14) with the dimension of the zone
in which the pressure is below that of the vapor of the liquid and which obtains in the solution of the problem of
laminar flow of a fluid capable of withstanding infinitely great tensile stresses. In such cases the boundary condition
n = 0 is satisfied along the entire length of half-line CE (Fig. 1).

The length % of the section in which pressure p < py is found in the usual way and is defined by the formula

*_i 2V1+x V1—|—y.+1 2.15)
o [T ]

Functions 15 (n) and %) are shown in Fig. 3, where curve 1 relates to the length of the cavitation zone
calculated by formula (2.14) and curve 2 tothat of theregion in whichp < Py as defined by formula (2.15). It will be seen
from Fig. 3 that for smalln, I, = 10%, whilefor high cavitation numbers 7./ — 2.

3. A series of experimental investigations of cavitational flow past steps was carried out in the Cavitation
Laboratory of the IPM (Institute of Applied Mechanics) of the Academy of Science of the USSR, with the participation
of K. K. Shal'nev, with a view to confirming the assumptions on which the theoretical analysis was based.

The experiments were carried out in a hydrodynamic tube with a working section of 24 X 100 mm. Models of
steps of height h = 9.0, 7.0, 3.6, and 1.8 mm where positioned in the constricted part of the working channel of
24 x 90 mm cross section. The relative height of steps was thus h/b = 0,10, 0.078, 0.040, and 0.020. Each model
was tested at flow velocities in the range of 11-19 m/sec measured at the working chamber axis. Various stages
of cavitation at v = const were produced by controlling the pressure in the tube.

The cavitation number was determined from velocity and pressure upstream of the step in the restricted section
of the working chamber. The results were plotted in the form of curves of w(A), where A = I/h is the relative length
of the cavitation zone and [ the visually assessed length of that zone from the front edge of the step.

The length I of the cavitation zone was measured on a scale marked on the side of the step.

Certain stages of cavitation were photographed in the reflected light of a flash bulb at an exposition time of
1/2000 sec (Fig. 4). The photographs show that for A = 0—5 the cavitation zone contains a mixture of liquid and vapor-
gas bubbles. In the initial stages these bubbles are clustered at a certain distance from the front edge of the step in
caverns which become periodically detached from the step. Such caverns are also observed in the proximity of the
step edge itself. With decreasing cavitation number the zone structure becomes more homogeneous.
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The results of calculation of the relative length A = [ /h of the cavitation zone by formula (2.13) for a step height
h = 9 mm and velocity v = 11.6 m/sec are shown in Fig. 5, and in Fig. 6 for h = 1.8 mm and v = 17.75 m/sec.
Experimental results are indicated in these figures by dots.
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The experimentally determined dependence »(A) shows a slight "hysteresis," depending on whether the
experiment proceeds from suppressed cavitation to its ultimate separation stage (the direct process) or from the
separation to the suppressed stage (the reverse process).

Experimental points lie close to the theoretical curves of n(A), except for values in the neighborhood of ®* and
corresponding to the instant of cavitation onset (7 = 0).

The considerable effect on n* of the relative restriction h/b of the working channel is noticeable. This is to a
certain extent explained by the velocity decrease in the boundary layer.
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